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Abstract

A simple X-ray powder diffractometric method was developed for the qualitative and quantitative assay of the two
crystalline modifications of ranitidine-HCl. The main purpose of the present work was to investigate if artificial neural
networks (ANNs) could be applied in quantitative X-ray diffractometric analyses. The ANN approach was compared
with a conventional mixture design method. The results obtained by the ANN had a smaller standard deviation and
relative error and a better precision at lower concentrations. ANNs provide a simple alternative to conventional
statistical modelling methods to identify the non-linear relationship without complex equations. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Polymorphs are different crystalline forms of a
drug that may have different physico-chemical
properties and biological activities. Since pharma-
ceuticals, at some stage during the manufacturing
process, are organic crystalline materials, poly-
morphism may affect these products during new
drug development and formulation. The existence
of different crystal forms impacts on key proper-
ties such as shelf-life, vapor pressure, solubility,

bioavailability, morphology and density. It is vital
to select the polymorph with the preferred proper-
ties, and predict problems such as the unwanted
crystallisation of other polymorphs. This knowl-
edge is also important for patenting and registra-
tion purposes.

X-ray diffractometry (XRD) is a powerful tech-
nique for characterising pharmaceutical solids and
is widely used for the identification of crystalline
solid phases and offers a unique advantage in the
quantitative analysis of mixtures (Bartolomei et
al., 1997). The X-ray diffractogram of every crys-
talline form of a compound is unique, making this
technique particularly useful for the identification
of different polymorphs of a drug. If there is a
mixture of crystalline solids, each of these compo-
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nents will have a different pattern, independent
of the other component in a mixture, making
independent analysis feasible. Quantitative analy-
sis of polymorphs from their powder mixture
usually requires that at least one high-intensity
peak unique to each form is available for inten-
sity measurements. A plot of peak intensity ratio
as a function of the weight ratio of the compo-
nents should result in a straight line (Klug and
Alexander, 1974) and has been successfully ap-
plied for the quantification of pharmaceutical
polymorphs (Doff et al., 1986; Chao and Vail,
1987; Suranarayanan, 1990). Organic compounds
show numerous X-ray peaks, and finding the
unique peak of each crystal form in a mixture is
sometimes not possible. This problem can be
solved by analysing integrated intensity (areas
under overlapping peaks). The technique is gen-
erally able to reveal relative amounts of two
crystalline polymorphs from their powder mix-
ture to a sensitivity of 0.5–1% depending on the
state of peak overlapping (Tanninem and Yliru-
usi, 1992).

Advance in computer controlled X-ray powder
diffracrometers permits quantitative analysis of
multicomponent mixtures using the complete
powder diffraction profile rather than a limited
amount of low-angle integrated intensity data
(Bish and Howard, 1980; Karfunkel et al., 1996;
Dinnebier et al., 1997; Smith, 1997).

The aim of this paper was to investigate if
neural networks could be applied in quantitative
X-ray powder diffractometric analysis. A simple
X-ray powder diffractometric method was devel-
oped for the qualitative and quantitative assay of
the ranitidine-HCl. The method was successfully
used to identify, and quantify two modifications
of ranitidine-HCl even when the weight fraction
of one polymorph in the mixture was as low as
0.01.

1.1. Artificial neural networks

Artificial neural network theory has been ex-
plained previously (Zupan and Gasteiger, 1991),
as has an example of how to apply this theory to
quantitative chemical analysis (Bos and Weber,

1991). Artificial neural networks (ANNs) have
been used mostly in pattern recognition problems
and modelling, so they should be applicable in
deciphering the pattern in diffraction data from
polymorphic mixtures.

For many years linear modelling was the most
commonly used technique based on the mod-
elling of one single variable at the time. Mod-
elling problems in analytical chemistry are not
this simple, however. The problems are often
non-linear, numerous constraints apply in the
optimisation problem, and besides, the single-fac-
tor-at-a-time strategy does not take into account
factor interactions. Multivariable experimental
design can overcome the problems with interac-
tion effects and non-linear estimation can be
used to compute the relationship between several
independent variables and a dependent variable.
The application of ANNs is another method for
modelling complicated systems. In particular,
neural networks attempt to model non-linear
functions with large numbers of variables.

Although there are many types of ANNs, the
one that predominates in the area of pattern
recognition is the feed-forward, back-propaga-
tion network. In this type of algorithm, informa-
tion from various sets of inputs is fed forward
through the ANN to make predictions that are
compared with known values (training data). The
error in the prediction is propagated back
through the system to modify the interneuron
connections to minimise the error in the predic-
tions. This process is continued with multiple
training sets until the error is minimised across
many sets.

Evaluating the performance of the network on
the training data may not produce the best re-
sults. If a network is left to train for too long, it
will overtrain, memorise the training data and
will lose the ability to generalise. Thus, three
types of data sets are used:

training data: used to train network;
test data: used to monitor the neural network
performance during training; and
validation data: used to measure the perfor-
mance of a trained application.

Each type of data has a corresponding error.
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2. Experimental

2.1. Materials

The two polymorphic forms of ranitidine-HCl
hydrochloride (Form 1 (Ch.-B 560018) and Form
2 (A.-Nr. 32005)) were obtained from Dolorgiet
Pharmaceuticals, St. Augustin, Germany. Binary
mixtures were made from these two polymorphic
forms with different proportions. The weight fac-
tions of Form (II) in the mixtures were as follows:
0, 1, 2, 5, 10, 20, 30, 50, 70 and 100% w/w.

2.2. Measurement of the XRD profiles

For XRD calibration analysis, 360 mg of bi-
nary mixtures of ranitidine-HCl powder were
compacted as tablets (¥16 mm) under a mass of
2 tons. Triplicate tablets were prepared and each
tablet was scanned three times. The XRD scans
were performed on a Philips wide angle X-ray
powder diffractometer with X-ray generator (PW
1130/00) and goniometer (PW1050, Philips,
Almelo, The Netherlands). A copper target X-ray
(wavelength 1.541A, CuKa) tube was operated at
a power of 40 kV, 30 mA. The automatic diver-
gence slit was set at 1° for the X-ray beam and at
0.1° for the receiving scintillation detector. The
scans were carried out at a step size of 0.04° and
counting time for 0.5 s/step within the ranges of
7–48° (2u).

X-ray diffractograms were recorded digitally by
a scintillation counter and graphed by the soft-
ware program Microsoft® Excell 5/95. Intensities
of six characteristic peaks extracted from the spec-
tra from both forms were analysed.

2.3. ANN software and network topology

The MS-Windows based artificial neural net-
work software, NNMODEL Version 1.404 (Neu-
ral Fusion) was used.

A standard feed-forward network, with back-
propagation learning rule and with a single hid-
den layer architecture was chosen. A single hidden
layer was used for simplicity, and because there is
little evidence to suggest that a larger number of
hidden layers improves performance (Hornik et
al., 1989; Ripley, 1996).

The peak heights in the diffractogram as a
function of the fraction of the polymorphic form
in the mixture of the two polymorphic forms was
emulated by 90 input/output data sets, with six
inputs (three peak heights at 17.04°2u, 21.9°2u,
24.8°2u, for Form 1 and 20.02°2u, 23.3°2u,
27.4°2u, for Form 2), one hidden layer and one
output neuron (percentage of Form 2). The num-
ber of hidden neurons, an adjustable parameter,
was optimised. The ANN was trained with four to
12 hidden neurons and from zero to 1000 training
cycles and performance was tested after each ad-
dition of a neuron.

At the start of the training run, both weights
and biases were initialised with random values.
During training, 20% of the data were used as the
test set and was back-propagated through the
network to evaluate the trained network.

2.4. Con6entional statistical modelling method

An often used statistical modelling method is
response surface methodology (RSM, or polyno-
mial regression). Mixture experiments represent a
special class of experimental design. In a general
mixture problem the measured response is as-
sumed to depend only on the relative proportions
of the ingredients present in the mixture and not
on the amount of the mixture (Cornell, 1990). No
matter how many ingredients are present in a
mixture their sum must equal 100%. Because one
component must be used to make up the total of
100%, the number of independent variables is one
less than the number of components in the mix-
ture. This is known as the mixture constraint, and
the types of response surfaces that may be fitted
are more restricted to allow for the relationship
between the factor levels (Clarke and Kempson,
1997). A general form of the quadratic mixture
model with two independent variables (compo-
nents) is:
y=c1x1+c2x2+c12x1x2

where x1 and x2 are weight fractions of the differ-
ent forms, x2=1−x1, c1, c2 and c12 are estimates
of model parameters, and y is the dependent
variable such as the peak height. Thus, six models
were fitted, one at each of the six analytic diffrac-
tion peaks.
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The models were simplified by a backward step-
wise regression so that only significant terms (PB
0.05) were included in them.

2.5. Method 6alidation

In order to test the predictions of the ANN and
traditional statistical modelling, six additional ex-
periments with four replicates were performed for
use as a validation data set. The factor levels of
the input variables were within the range of the
training experimental data. The average relative
error for each value (ERR%; Murtoniemi et al.,
1994) was used to examine the best generalisation
ability of the models.

3. Results and discussion

XRD is a powerful technique for the identifica-
tion of crystalline solid phases, but there are
numerous sources of error in quantitative XRD.
X-ray lines are affected by preferred orientation
of the particles in the sample. Variation in particle
size can have a significant influence on the peak
shape. It will affect the maximum peak intensity
but will not affect the integrated intensity (Cullity,
1978) of peak (area under the curve). The pres-
ence of overlapping peaks makes the determina-
tion of integrated intensity impossible and
maximum intensity is then used for the quantita-

tion. Grinding could minimise preferred orienta-
tion by reducing the particle size. However,
grinding was avoided because it could induce
polymorphic transitions. We wanted to keep the
method as simple as possible and to directly
analyse the powdered samples with minimal pre-
treatment. Differences in the position and intensi-
ties of the peaks may not be attributed to
preferred orientation of crystals, but different ar-
rangements of ranitidine hydrochloride molecules
in the crystalline lattice of each form. XRD pat-
terns of the two polymorphs were sufficiently
distinct to characterise each crystalline form.

The powder X-ray diffractograms of Form 1
and Form 2 showed characteristic diffractions at
17.04, 21.9, 22.5, 24.8°2u and 20.02, 23.3, 27.4°2u,
respectively, for identification. From these, peaks
at 17.04, 21.9, 24.8°2u, and 20.02, 23.3, 27.4°2u
were chosen as the quantitative assay since they
showed no, or only minor, interference with the
diffraction signals from those of the other form
(Fig. 1).

The final regression models obtained with RSM
for peak heights versus weight fractions were lin-
ear for Form 1 and a quadratic mixture model for
Form 2 (Table 1):

Significant interaction terms in models for
Form 2 peaks (y4–y6) revealed that the concentra-
tion of Form 1 in a mixture influences the rela-
tionship between Form 2 concentration and peak
height. All six models were used to predict con-

Fig. 1. X-ray diffractograms of two polymorphic forms of ranitidine-HCl.
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Table 1
Summary results of regression for estimated models

Parameter estimate St. errorPeak heighta RParameter

23.689 0.3017Y1 c1

4.205 0.4220c2 0.995

33.296 0.2643Y2 c2

4.156 0.3696c1 0.998

23.934Y3 0.1898c1

2.837 0.2655c2 0.995
6.449 1.467c

69.714Y4 1.875c2

0.598 0.079 0.989c
3.213 0.524c1

29.997Y5 0.670c
0.161 0.028c12 0.991
7.865 0.219c1

14.973Y6 0.280c2

c12 0.063 0.012 0.996

a y1–y6 are peak heights at 17.04°2u, 21.9°2u, 24.8°2u, 20.02°2u, 23.3°2u, 27.4°2u, respectively.

centrations from the selected peak heights and an
averaged value was compared with the ANN’s
prediction.

For the ANN the error in the training values
decreased as the number of hidden neurons was
increased. By increasing the number of hidden
neurons, the ANN more closely followed the to-
pology of the training set data. However, exceed-
ing an optimum number of hidden neurons results
in tracing the training pattern too closely and the
system was overtrained, and exhibits poor predic-
tion for unseen data. The best results and lowest
mean square root error for the test set was ob-

tained with ten hidden neurons and 400 training
cycles. More hidden neurons and training cycles
did not improve the generalisation ability as the
testing error started to increase, i.e. model was
overtrained (Sarle, 1995).

The results of the predictions of the composi-
tions of unknown samples (validation set) by
RSM are shown in Table 2 and by ANN in Table
3. Although the differences between RSM and
ANN methods are not great, the ANN predic-
tions show a smaller standard deviation and rela-
tive error especially at lower concentrations of
active form.

Table 2
Accuracy and precision in RSM predictions

SDa ERR (%)bPercentage of Form 2 RangeaAveraged prediction

679.407.79 6.29–10.49 1.921.00
415.7210.31 8.92–11.96 1.272.00

14.620.8628.53–29.5425.00 28.65
40.00 43.15 42.19–44.45 1.02 7.87

1.2560.80–63.6462.1760.00 3.62
81.19 1.491.9978.80–83.5980.00

a Range and standard deviation for the replicates at each percentage of Form 2 (n=4).
b ERR(%)= ((Predicted−Actual)/Actual)×100.
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Comparison of the two methods was done by a
least square fitting method (Massart et al., 1988).
The results predicted by the RSM and ANN were
plotted against measured weight fraction of Form
2 (Fig. 2). The intercept is a measure of method
bias, while the deviation of the slope from unity is
a measure of proportional error. A proportional
systematic error leads to a change in a slope, so
that the difference between slope and unity gives
an estimate of the proportional error. The regres-
sion equations were: RSM=7.04+0.918x and
ANN=0.340+0.999x ; the correlation coefficient
was 0.999 for both methods indicating highly
correlated results. For the RSM model, intercepts

(t(4)=10.13; ttab=2.776) was significantly differ-
ent from zero indicating a method bias and the
slope was not equal to unity (t(4)=12.95; ttab=
2.776) specifying a constant systematic error. For
the ANN model the intercept was not significantly
different from zero (t(4)=0.71) and the slope was
equal to unity (t(4)=0.23).

The relative precision of the two methods was
determined by comparing the variances for repli-
cate analyses of single samples at various weight
fractions of Form 2. The estimated variances were
similar (F3,3=1.052–1.214: Ftab=9.28), except at
1 and 2% (Table 4). In other words, both methods
have the same precision, except at lower concen-

Table 3
Accuracy and precision in ANNs predictions

SDaRangea ERR (%)bAveraged predictionPercentage of Form 2

0.430.781.00 22.580.25–1.15
1.992.00 0.490.720.67–3.96

24.94–27.1625.00 0.9526.19 4.77
40.00 41.15 40.21–42.42 1.00 2.86

59.74 58.35–61.23 1.26 0.4560.00
79.98 0.0380.00 1.17777.36–82.58

a Range and standard deviation for the replicates at each percentage of Form 2 (n=4).
b ERR(%)= ((Predicted−Actual)/Actual)×100.

Fig. 2. Predicted concentrations by the RSM and ANN plotted against measured percentage of Form 2.
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Table 4
The precision of the respective methods determined by com-
paring the variance for replicate analyses

F-ratioaVariancePercentage of Form 2
ANNRSM

0.141 62.751.00 8.855
1.2010.162 7.442.00

2.02625.00 2.460 1.21
0.456 1.0540.00 0.479
0.6610.647 1.0260.00

1.85380.00 2.180 1.18

a F3,3=9.28 (10% of two sided test).
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